Pesticide Interactions with Peanut Cultivars'

E. W. Hauser*, G. A. Buchanan, J. E. Harvey, W. L. Currey, D. W. Gorbet, and N. A. Minton²

ABSTRACT

Interactions among six peanut (Arachis hypogaea L.) cultivars, herbicides individually and in sequence, and a systemic insecticide were studied on four soil series in 1976 and on three soil series in 1977. Yields of peanuts grown on all soils were reduced significantly in 1976 by intensive sequential applications of the five herbicidal treatments. Additionally, repeated dinoseb treatment reduced yields on the Ruston and Greenville soils. In 1977, yield decreases did not occur from any herbicide treatment on the Dothan or Greenville soils; however, yields on the Tifton soil were reduced by intensive sequential herbicidal treatment or by 2,4-DB alone. Herbicides did not interact significantly with cultivars except on Greenville soil in 1977 when yields of only the Tifrun cultivar were increased by treatment with either benefin or dinoseb. The systemic insecticide disulfoton, with one exception, consistently increased the yield of peanuts when averaged over cultivars and herbicides. Also, in 1977, on the Greenville soil, Titrun yields were increased significantly by disulfoton but disulfoton effects on other cultivars were not statistically significant. Market quality tests indicated that the percentage of sound mature kernels (SMK) was frequently reduced by intensive herbicidal applications.

Key Words: Cultivars, Pesticide-interactions, Herbicide-sequences, Disulfoton, peanut.

During recent years, the intensity of herbicide usage by farmers on peanuts (Arachis hypogaea L.) has increased greatly. Introduction of new higher yielding peanut cultivars and the attainment of higher yield levels have accompanied this increase in herbicide usage. Many researchers and extension specialists are concerned about genetic vulnerability of crops to intensified pesticide treatment. Hauser et al. (2) summarized previous literature on pesticide interactions in oilseed crops and also presented new results which indicated that (a) peanut cultivars often respond differentially to pesticides and (b) that these interactions are influenced by edaphic and environmental conditions. On three of four soil series, an insecticide X cultivar interaction occurred accompanied by significant yield increases of Florunner, the most widely grown peanut cultivar in the United States. Herbicides interacted with cultivars in four of the eight experiments. In further studies, Hauser et al. (3) found that the yields of Florunner were increased by selected moderate herbicidal sequences involving only preplant incorporated and "cracking" treatments. However, yields were decreased by intensive herbicidal sequences which included four applications of dinoseb. As in the first studies, the average yield of peanuts was increased significantly by the insecti-

¹Cooperative investigations of AR, SEA, U.S. Dep. Agr.; Goldkist, Inc.; and the Agric. Exp. Sta. of Alabama, Florida, and Georgia.

^aRespectively, Res. Agron., AR-SEA, U. S. Dep. Agric., Coastal Plain Experiment Station, Tifton, GA 31793; Alumni Prof., Auburn Univ., Auburn, AL 36830; Director, Goldkist Research Farm, Ashburn, GA 31714; Assoc. Prof., Univ. FLorida, Gainesville, FL 32601; Assoc. Prof., Univ. Florida, Marianna, FL 32446; and Research Nematologist, AR-SEA, U. S. Dep. Agric., Tifton, GA 31793. cide disulfoton. For further clarification about interaction effects on a wider spectrum of germplasm, the responses of six cultivars on four soil series to the systemic insecticide disulfoton and to five herbicidal treatments applied singly and in sequence were studied.

Materials and Methods

Seven experiments were conducted in 1976 and 1977 on Dothan sandy loam (Headland, AL), on Greenville sandy clay loam (Plains, GA), on Ruston loamy fine sand (Marianna, FL - 1976 only) and on Tifton sandy loam (Ashburn, GA). The peanut cultivars were 'GK 3' and 'Early Bunch' (virginia types), 'Florunner' and 'Tifrun' (runner types), and 'Tamnut 74' and 'GK 19' (spanish types). Although dates varied among locations, all plantings were made during the traditional planting season from April 10 to May 20.

The experimental design at all locations was a split, split, split plot with four replicates. Either two- or four-row plots were used. Cultivars were whole plots and herbicidal treatments were split plots. A description of the herbicidal treatments follows: V was vernolate (S-propyl dipropylthiocarbamate) at 2.80 kg/ha applied as a preplant incorporated treatment; B was benefin (N-butyl-N-ethyl-a,a,a-trifluoro-2,6-dinitrop-toluidine) at 1.68 kg/ha applied as a preplant incorporated treatment; A + ND was a mixture of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] plus naptalam (N-1-naphthylphthalamic acid) and dinoseb (2-sec-butyl-4,6-dinitrophenol) at 3.36 + 2.24 + 1.12 kg/ ha, respectively, applied at the "cracking" stage; D was dinoseb at 0.84 kg/ha applied four times beginning at "cracking" plus 10 days; 2,4-DB was 4-(2,4-dichlorophenoxy)butyric acid at 0.45 kg/ha applied twice as a mid- to late season postemergence spray: "Sequence" consisted of serial treatment with all of the aforementioned herbicides; and finally, "Check" consisted of peanuts which recieved no herbicide. All treatments, including the check, were handweeded as needed throughout the season to eliminate weed competition as a factor influencing crop vield. If cultivation was needed to control weeds in the check plots, all of the treated plots were cultivated at the same time as the checks. The split, split, split plots were disulfoton (O, O-diethyl S-(2)ethylthio)ethyl) phosphorodithioate at 1.12 kg/ha versus none. Disulfoton, formulated at 10% granules, was applied in the drill with the peanut seed. Other production practices followed the recommendations of the respective Cooperative Extension Service.

Each cultivar was harvested separately at maturity. The peanuts were dug with a commercial digger-shaker, windrowed, and combined within five days. Yield (from all studies) and harvest sample market quality data (from Greenville and Tifton soils) were subjected to analayses of variance and to Duncan's multiple range test using comparisons at the 5% level and, where noted, at the 10% level. Only those sets of treatment or interaction means which were statistically significant are presented and discussed.

The number of nematodes in the soil at the 0 to 20 cm depth was determined in 1976. Assays were made on the Greenville soil at planting, at midseason and at harvest. They were made on the Dothan and Tifton soils only at harvest. Ten soil cores (1.9 X 20 cm) were taken from the drill rows in each plot. The soil was composited and thoroughly mixed. Nematodes were extracted and counted by genera from a 150 cm³ subsample using the centifuge-sugar-flotation method (4).

Results

Yield of peanut cultivars. The average yields of GK 3 and Tifrun were significantly higher than the other cultivars (Table 1). As in our previous studies, GK 3 consistent-

Table 1. Summary of peanut yields from cultivar-pesticide interaction studies on selected soil types in the Southeast peanut belt, 1976 and 1977.

	_			of in-shel	peanuts	(kg/ha)ª/		
of	Soil Type				Soil Type			
variation	Dothan	Greenville	Ruston	Tifton	Dothan	Greenville	Tifton	Av.
		197	6			1977		
Cultivar		Averag	ed over h	erbicide a	nd insectio	<u>ide treatm</u>	ents	
GK 3	3390a	4400b	5270a	4340a	5450a	3730ь	4260a	4410a
Early Bunch	2740b	4950a	5620a	4070a	3740c	4480ab	3600b	4170b
Florunner	2660b	4790a	4680b	3820a	4870b	4390ab	2670c	3980b
Tifrun	2600b	5080a	5480a	4490a	4650b	4780a	4600a	4530a
Tamnut 74	2460b	2830d	3700c	2750c	1370d	3760b	2790c	2810d
	0000	4020c	4430b	3360bc	4140c	4490ab	3350b	3760c
GK 19 Herbicide b/	2500Ь 							
Herbicide ,						ide treatme		
Herbicide Treatments V	 2890ab	Averag 4340bc	jed over ci 5130ab	ultivar an 3860bc	d insectic 4020NS	i <u>de treatme</u> 4240NS	nts	3980b
Herbicide <u>Treatments</u> V B	2890ab 3150a	Averag 4340bc 4670a	ied over ci 5130ab 5300a	ultivar an 3860bc 4250a	d insectic 4020NS 4140	ide treatme 4240NS 4360	nts 3390ab 3720a	3980b 4230a
Herbicide <u>Treatments</u> V B A+ND	2890ab 3150a 2720b	Averag 4340bc 4670a 4480ab	<u>led over c</u> 5130ab 5300a 5000ab	ultivar an 3860bc 4250a 4040ab	d insectic 4020NS 4140 4020	<u>ide treatme</u> 4240NS 4360 4350	nts 3390ab 3720a 3740a	3980b
Herbicide Treatments B A+ND D	2890ab 3150a 2720b 2740b	Averag 4340bc 4670a 4480ab 4200c	ied over ci 5130ab 5300a	ultivar an 3860bc 4250a	d insectic 4020NS 4140 4020 4310	ide treatme 4240NS 4360 4350 4310	nts 3390ab 3720a	3980b 4230a
Herbicide Treatments B A+ND D	2890ab 3150a 2720b 2740b 2670b	Averag 4340bc 4670a 4480ab	1000 per cl 5130ab 5300a 5000ab 4240c 4940b	3860bc 4250a 4040ab 3680c 3920bc	d insectic 4020NS 4140 4020 4310 4000	ide treatme 4240NS 4360 4350 4310 4320	nts 3390ab 3720a 3740a 3570ab 3330b	3980b 4230a 4050b 3860c 3950c
Herbicide Treatments B A+ND D 2,4-DB Sequence	2890ab 3150a 2720b 2740b 2670b 1920c	Averag 4340bc 4670a 4480ab 4200c 4460ab 3680d	ted over ci 5130ab 5300a 5000ab 4240c 4940b 4270c	3860bc 4250a 4040ab 3680c 3920bc 3060d	d insectic 4020NS 4140 4020 4310 4000 3880	ide treatme 4240NS 4360 4350 4310 4320 4140	3390ab 3720a 3740a 3570ab 3330b 3330b	3980b 4230a 4050b 3860c 3950c 3460d
Herbicide <u>Treatments</u> V B A+ND	2890ab 3150a 2720b 2740b 2670b	Averag 4340bc 4670a 4480ab 4200c 4460ab	1000 per cl 5130ab 5300a 5000ab 4240c 4940b	3860bc 4250a 4040ab 3680c 3920bc	d insectic 4020NS 4140 4020 4310 4000	ide treatme 4240NS 4360 4350 4310 4320	nts 3390ab 3720a 3740a 3570ab 3330b	3980b 4230a 4050b 3860c 3950c 3460d
Herbicide Treatments B A+ND D 2,4-DB Sequence	2890ab 3150a 2720b 2740b 2670b 1920c	Averag 4340bc 4670a 4480ab 4200c 4460ab 3680d	ted over ci 5130ab 5300a 5000ab 4240c 4940b 4270c	3860bc 4250a 4040ab 3680c 3920bc 3060d	d insectic 4020NS 4140 4020 4310 4000 3880	ide treatme 4240NS 4360 4350 4310 4320 4140	3390ab 3720a 3740a 3570ab 3330b 3330b	3980b 4230a 4050b 3860c
Herbicide Treatments B A+ND D 2,4-DB Sequence	2890ab 3150a 2720b 2740b 2670b 1920c	Averag 4340bc 4670a 4480ab 4200c 4460ab 3680d 4590ab	ted over ci 5130ab 5300a 5000ab 4240c 4940b 4270c 5180ab	ultivar and 3860bc 4250a 4040ab 3680c 3920bc 3060d 3900bc	d insectic 4020NS 4140 4020 4310 4000 3880 3930	ide treatme 4240NS 4360 4350 4310 4320 4140	nts 3390ab 3720a 3740a 3570ab 3330b 3330b 3300b 3770a	3980b 4230a 4050b 3860c 3950c 3460d
Herbicide <u>Treatments</u> V B A+ND 2,4-DB Sequence Check	2890ab 3150a 2720b 2740b 2670b 1920c	Averag 4340bc 4670a 4480ab 4200c 4460ab 3680d 4590ab	ted over ci 5130ab 5300a 5000ab 4240c 4940b 4270c 5180ab	ultivar and 3860bc 4250a 4040ab 3680c 3920bc 3060d 3900bc	d insectic 4020NS 4140 4020 4310 4000 3880 3930	ide treatme 4240NS 4360 4350 4310 4320 4140 4160	nts 3390ab 3720a 3740a 3570ab 3330b 3330b 3300b 3770a	3980b 4230a 4050b 3860c 3950c 3460d

 $\underline{a}/$ Means in the same column within the same set of averages not followed by the same letter are significantly different at the 5% level except as indicated.

b/ in all tables, the herbicide labbreviations are as follows: V is vernolate; B is benefin; A+ND is a mixture of alachlor-naptalam-dinoseb; D is dinoseb; 2,4-DB is 2,4-(dichlorophenoxy) butyric acid; sequence includes all of the individual herbicide treatments applied serially.

 $\underline{c}/$ Significance tested at the 10% level.

ly yielded higher than the other varieties on the Dothan soil. Florunner and Early Bunch produced intermediate yields. Early Bunch outyielded Florunner on the Ruston soil in 1976 and on the Tifton soil in 1977; however, Florunner outyielded Early Bunch by 1130 kg/ha on the Dothan soil in 1977. Average yields of the Spanish type cultivars were lower than for either the bunch or runner types with GK 19 generally yielding higher than Tamnut 74.

Effects of herbicides on yields. Peanut yields at all locations were reduced significantly in 1976 by intensive sequential applications of the five herbicidal treatments (Table 1). In addition, the repeated dinoseb treatments reduced yields on the Ruston and Greenville soils. On the Tifton soil, benefin increased yields in 1976. In 1977, yield decreases did not occur from any herbicide treatment on the Dothan or Greenville soils; however, the intensive sequential treatments and 2,4-DB applied alone reduced yields on the Tifton soil.

Effect of disulfoton on yield. When averaged over all experiments disulfoton treated peanuts yielded significantly higher than the nontreated (Table 1). The average difference of 150 kg/ha was almost three times the magnitude observed in our previous work (2). The greatest difference due to disulfoton occurred on the Dothan soil with increases of 200 and 270 kg/ha in 1976 and 1977, repsectively.

Interactions among cultivars and pesticides. Herbicides did not interact significantly with cultivars except on the Greenville soil in 1977 when yields of only the Tifrun cultivar were increased by treatment with either benefin or dinoseb above the check but not above other herbicidal treatments (Table 2). Also, in 1977, on the Greenville soil, Tifrun yields were increased significantly by disulfoton but disulfoton effects on other cultivars were not statistically significant. In general, fewer interactions among

Table 2. Peanut yields as affected by interaction of cultivars with pesti-
cide treatments, Greenville soil, 1977*.

Source		Yield	of in-shel		(kg/ha)	
of	Cultivars					
variation	GK-3	Early Bu.	Florunner	Tifrun	Tamnut	GK-19
Herbicide						
Treatments		Interact	on of herbi	cides and	cultivars	
v	3380b	4890a	4330a	4720ab	3520a	4580a
В	4010a	4440ab	4370a	5270a	3770a	4320a
A+ND	3670ab	4780a	4670a	4760ab	3826a	4610a
D	3380b	4690a	4350a	4960a	3750a	4760a
2,4-DB	3810ab	4380ab	4 330a	4760ab	3950a	4690a
Sequence	4010a	3970b	4370a	4730ab	3570a	4170a
Check	3810ab	4380ab	4290a	4240b	3940a	4340a
Treatments		Interact	ion of insec	ticide and	cultivars	
Disulfoton	3650a	4520a	4480a	4980a	3770a	4580a
No disulfoton	3800a	44 30a	4300a	4580b	3760a	4410a

a/ Herbicide or insecticide means within a cultivar in the same column not followed by the same letter are significantly different.

cultivars and pesticides occurred in these studies in comparison to previous research (2).

Effect of pesticides on SMK's. The percentage of SMK's following herbicidal treatments from 1976 to 1977 are shown in Table 3. The herbicidal sequence consistently reduced SMK's of peanuts grown on the Greenville soil.

On the Tifton soil, a significant interaction of herbicides X disulfoton occurred in 1976 (Table 4) where the sequence treatment with no disulfoton reduced SMK's significantly.

Number of peanut plants. The number of peanut plants at harvest on the Tifton soil was reduced 11% in 1976 by herbicides applied in sequence (Table 5). Herbicides used singly did not significantly affect plant number. Compared to the check, disulfoton increased the number of plants by 4% in 1976, a difference which was statistically significant at the 5% level of probability.

Table 3. Percentage of sound mature kernels following herbicide treatments on Greenville soil, 1976-1977".

Herbicide	Percent sound mature kernels		
treatment	1976	1977	
٧	71.6 ab	67.9 ab	
В	72.0 a	68.4 a	
A+ND	70.1 ab	68.2 ab	
D	70.9 ab	67.6 ab	
2,4-DB	70.2 Ь	67.0 bc	
Sequence	67.0 c	66.1 c	
Check	71.8 ab	67.9 a	

<u>a/</u> Means in the same column not followed by the same letter are significantly different at the 5% level.

Table 4. Percentage of sound mature kernels trom interaction study, Tifton, soil, 1976°.

Herbicide	Percent sound mature kernels			
treatmentV	Disulfoton	No Disulfoton		
	72.00 a	71.22 a		
В	71.72 a	72.22 a		
A+ND	70.50 a	70.94 a		
D	70.72 a	71.17 a		
2.4-DB	69.65 a	70.83 a		
Sequence	68.50 a	65.50 b		
Check	72.24 a	71.44 a		

a/ Means within the same line not followed by the same letter are significantly different at the 5% level. Table 5. Number of peanut plants at harvest following herbicide and insecticide treatments, Tifton soil, 1976-1977^a.

Average number of plants/plot			
1976	1977		
103 a	116 a		
99 a	118 a		
102 a	120 a		
100 a	117 a		
103 a	114 a		
91 b	123 a		
102 a	120 a		
102 a	119 a		
98 b	118 a		
	1976 103 a 99 a 102 a 100 a 103 a 91 b 102 a		

a/ Means in the same column within the same set of averages not followed by the same letter are significantly different at the 5% level.

An interaction between herbicides and disulfoton on the number of peanut plants occurred only once (Table 6). The preplant incorporated treatments, both vernolate and benefin, were characterized by fewer plants where no disulfoton was applied.

Effects of nematodes. No major peanut nematode pathogen was recovered in economically damaging numbers from any of the soil types. Ring nematode, *Criconemoides* sp., a weak pathogen of peanuts, was the only nematode recovered in large numbers from the Tifton soil and in low numbers from the Dothan and Greenville soils. Root-knot larvae, *Meloidogyne* sp., were recovered from a few plots on the Greenville soil. The application of disulfoton did not significantly affect nematode population levels. Peanut pods from the Dothan and Greenville soils, examined at harvest time, were virtually free of nematode damage.

Table 6. Interaction of herbicide treatments and disulfoton on the number of peanut plants, Tifton soil, 1976^a.

Herbicide	Average number of plants/plot			
treatment	Disulfoton	No Disulfoton		
v	121 a	112 b		
B	122 a	114 b		
A+ND	119 a	120 a		
D	117 a	117 a		
2,4-DB	113 a	115 a		
Sequence	120 a	125 a		
Check	117 a	122 a		

 \underline{a}' Means within the same line not followed by the same letter are significantly different at the 5% level.

Discussion

In previous field studies in Oklahoma by Cargill and Santelmann (1), insecticides and herbicides did not interact significantly. In our studies, interactions sometimes occurred; but detrimental interactions between the systemic insecticide and herbicides, between insecticide and cultivars and between herbicides and cultivars were minimal. However, intensive sequential herbicide treatment, in five of the seven studies reported herein, reduced peanut yields significantly. In addition, dinoseb reduced yields once and 2,4-DB reduced yields twice when used as individual treatments. No other herbicides used alone reduced average yields significantly. In our interaction research conducted from 1973 to 1977 (including the studies reported herein) intensive herbicide sequences reduced peanut yields in 14 of 21 experiments.

Conversely, disulfoton increased average peanut yields in 13 of 21 studies. Yield increases promoted by disulfoton were 3.6% when averaged over all 21 experiments. According to Minton and Morgan (5), control of thrips by systemic pesticides such as disulfoton does not contribute to increased crop yields except where extreme damage occurs although control of the more pathogenic nematodes does increase yields. However, nematode assays indicated that the yield increases were not associated with their control. Therefore, the cause of disulfoton related yield increases remains obscure.

In the 14 studies from 1973 to 1977 in which various peanut cultivars were used, disulfoton interacted with cultivars in five experiments while herbicides interacted with cultivars only three times. Among the 21 studies, only one interaction between disulfoton and herbicides occurred.

Our data suggest that severe detrimental interactions among the systemic insecticide disulfoton, herbicides and peanut cultivars are unlikely to occur with the herbicides and peanut cultivars now being used in production systems. However, our results suggest that intensive sequences of herbicides should be used with utmost discretion. Widespread adoption of close-row patterns, which increase the competitiveness of the crop with weeds, may eliminate the need for intensive postemergence herbicide applications in many situations.

Literature Cited

- Cargill, Roland L. and P. W. Santelmann. 1971. Response of peanuts to combinations of herbicides with other pesticides. Weed Sci. 19:24-27.
- Hauser, E. W., G. A. Buchanan, W. J. Ethredge, M. D. Jellum and S. R. Cecil. 1976. Interactions among peanut cultivars, herbicide sequences, and a systemic insecticide. Peanut Sci. 3:56-62.
- Hauser, E. W., G. A. Buchanan, W. L. Currey, W. J. Ethredge, D. W. Gorbet, J. W. Slaughter and C. W. Swann. 1977. Response of Florunner peanuts to planting dates, herbicide sequence, and a systemic insecticide. Weed Sci. 25:203-211.
- Jenkins, W. R. 1964. A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692.
- Minton, N. A. and L. W. Morgan. 1974. Evaluation of systemic and non-systemic pesticides for insect and nematode control in peanuts. Peanut Sci. 1:91-98.

Accepted October 23, 1981