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ABSTRACT 

Pre-harvest aflatoxin contamination (PAC) occurs when the peanut is exposed to severe 
drought and heat stress prior to harvest.  Development of genotypes that are either 
resistant or limiting to Aspergillus infection and/or that can curtail aflatoxin production 
is a key objective in peanut breeding. Using SNP markers and phenotype data on aflatoxin 
resistance collected in previous years, we utilized genomic selection (GS) to study PAC 
resistance in peanut. The technique was validated in the Florida-07 x GP-NC WS 16 
recombinant inbred population by assessing high heritability traits. GS was then deployed 
to study PAC resistance in the Tifrunner x C76-16 and Florida-07 x C76-16 populations. 
The resultant models yielded prediction accuracy values of 0.24 and 0.23 which while 
low, were comparable to the heritability values of 0.31 and 0.1 for each population, 
respectively. Using genomic estimated breeding values (GEBVs), entries were selected for 
two drought shelter studies. Manual scoring and multispectral imaging were used to 
acquire end season drought stress data. Low correlation values (-0.15 for shelter A and 
0.32 for shelter B) were observed between the GEBVs and actual end season aflatoxin 
content. Correlations between visual drought ratings and PAC were also low (0.23 and 
0.16 for shelter A and B respectively). While strong inverse correlations were observed 
between GNDVI and visual drought ratings (-0.74 and -0.73 for shelters A and B 
respectively), GNDVI did not confer a clear advantage for selection of PAC resistance. 
Ideally, the use of genome-spanning markers in GS may enable selection for a difficult to 
phenotype trait like PAC resistance. Although this study did not show clear advantages 
of the method over conventional selection, it is an important step for implementation of 
GS and the use of GEBVs for trait selection in peanut. 

 

INTRODUCTION 

Peanut is an important oil seed legume that is widely grown in 
all tropical and sub-tropical regions in the world (Bertioli et al., 
2011). An important constraint to its production is 
contamination by aflatoxins, which are  secondary metabolites 

mainly produced by Aspergillus flavus and Aspergillus 
parasiticus (Khlangwiset et al., 2011). e fungi occur 
ubiquitously in the soil and can colonize the seeds of a diverse 
number of crops such as peanut, maize, soybean, sorghum, 
cotton seed, cassava, chilies and tree nuts. At optimum 
conditions, typically temperatures between 24 and 35°C and 
humidity above 7%, the fungi can grow and produce aflatoxins 
on many commodities (Williams et al., 2004; Klich, 2007). A. 

mailto:pozias@uga.edu


19 Genomic Selection for Reduced Aflatoxin Contamination 

 

Peanut Science  Volume 51 
 

flavus produces the aflatoxins B1 and B2 while A. parasiticus 
can also produce aflatoxins G1 and G2. Exposure to small 
amounts of these aflatoxins results in development of chronic 
aflatoxicosis while acute aflatoxicosis is the consequence of 
exposure to high concentrations of the toxins (Bhatnagar-
Mathur et al., 2015). Both levels of exposure have serious 
consequences to health, since aflatoxin is the most potent 
naturally occurring carcinogen. It has been linked to 
development of liver cancer, suppression of the immune system, 
and nutritional interference, which in turn leads to severe 
weight loss and stunting especially in children (Williams et al., 
2004). It is a serious problem especially in developing countries 
where high levels of exposure begin in utero and is associated 
with severe developmental challenges as well as growth 
impairment (Gong et al., 2002; Khlangwiset et al., 2011).  

In many developing countries, there is high contamination 
of staple crops such as maize and peanut due to absence of 
regulations to control exposure (Wild and Gong, 2010). 
Combined with the challenges of frequent food shortages, 
consumption of highly aflatoxin-contaminated food is common 
(Guo et al., 2009). This was tragically illustrated in the 2004 
aflatoxicosis outbreak in rural Kenya that resulted from 
consumption of maize with up to 1000 ppb of aflatoxin, leading 
to 125 deaths (Lewis et al., 2005). In developed countries, the 
law regulates the maximum aflatoxin contamination allowed. 
For instance in the US, only 0.5 ppb, 20 ppb, and up to 300 
ppb respectively, is permissible in milk, food and feed products, 
respectively, while in the EU, limits as low as 4 ppb of total 
aflatoxins are allowed (Guo et al. 2009). In peanut, higher 
contamination rates result in destruction of nuts leading to 
losses that have been estimated at around $20 million annually 
in the southeastern US (Lamb and Sternitzke, 2001).  

The health and economic consequences of aflatoxin 
contamination makes its prevention a key concern for the 
peanut industry (Holbrook et al., 2009). While it is possible to 
mitigate aflatoxin contamination by optimizing post-harvest 
cultural practices such as curing, drying and storage, a more 
desirable approach is the identification of genetic-based 
resistance to pre-harvest aflatoxin contamination (PAC). 
Ideally, resistant genotypes would be those that either mitigate 
fungal colonization, inhibit the formation of aflatoxin or exhibit 
resistance to abiotic stresses such as drought (Liang et al., 
2006;Guo et al., 2008). Particularly for peanut, development of 
cultivars with resistance to PAC is desirable (Anderson et al., 
1995; Holbrook et al., 2009; Wang et al., 2010). The geocarpic 
nature of the peanut plant, that is the habit of flowering above 
ground and production of fruit below the soil surface (Barker, 
2005), makes the fruit particularly vulnerable to PAC.  

The correlation of drought stress with development of 
PAC has been well established (Pettit et al., 1971; Hill et al., 
1983; Wilson and Stansell, 1983; Holbrook et al., 2000a). The 
combination of water stress and exposure of developing peanut 
pods to high soil temperature, triggers the contamination of 
intact undamaged pods with aflatoxin prior to harvest. This is 
because A. flavus and A. parasiticus optimally grow at 
temperatures of 25 to 42°C, being able to thrive in soils with 
moisture potential as low as -35 MPa. Under these conditions, 
the fungi become extremely competitive and may become the 
dominant fungal species in the soil. Elevation of soil 
temperature occurs as solar radiation reaches the soil surface due 
to receding of the peanut canopy during severe drought 
(Blankenship et al., 1984; Cole et al., 1985; Payne, 1998). It is 

thus not surprising that in peanut, aflatoxin contamination 
becomes prevalent during prolonged exposure to heat and 
drought stress, with drought susceptible genotypes manifesting 
higher susceptibility to PAC (Holbrook et al., 2000a; Girdthai 
et al., 2010). As a result of the significance of aflatoxin, 
screening and breeding  of cultivars with resistance especially to 
PAC is a key objective in peanut breeding (Holbrook et al., 
2009; Wang et al., 2010). 

Several studies have attempted to address the challenge of 
aflatoxin contamination, with availability of resistant genotypes 
being reported (Mixon and Rogers, 1973; Mehan et al., 1981; 
Mixon, 1986). These resistant genotypes were identified 
through in vitro seed colonization by A. flavus (IVSCAF) lab 
assays. However, when tested in field studies under drought 
conditions, these  genotypes have not demonstrated clear 
genetic resistance to aflatoxin contamination (Blankenship et 
al., 1985; Anderson et al., 1995). Nonetheless, consistent with 
the association between drought stress and PAC, other studies 
have demonstrated that more drought tolerant genotypes 
accumulate less aflatoxin than drought susceptible genotypes. 
This was noted for example by Holbrook et al. (2000a) in a 
study that also noted positive correlations between PAC and leaf 
temperature measurements as well as visual stress ratings. Due 
to their cost effectiveness and ease of measurement, the latter 
two were considered to be potential proxies for selection of PAC 
resistance.  

Due to the importance of the high oleic trait in peanut, 
studies have been done to determine whether differential 
accumulation of aflatoxin occurs with high oleic compared to 
high linoleic peanut. High oleic lines were shown to have high 
post-harvest growth of Aspergillus and increased aflatoxin 
contamination (Xue et al., 2003). However, a previous field-
based study of high oleic peanut subjected to drought stress and 
aflatoxin inoculation did not show any differences in PAC as a 
result of fatty acid differences (Holbrook et al., 2000b). In a 
quest to find out if genetic resistance to other fungi that infect 
peanut can confer protection against Aspergillus, Holbrook et 
al. (1997) tested genotypes that are resistant to late leaf spot and 
white mold. Unfortunately, they did not observe reduced PAC 
in any of the genotypes tested, thus invalidating resistance to 
other fungi as an indirect selection method for PAC. 

Recent studies of PAC in peanut seem to suggest the key 
to genetic resistance is not so much the prevention of fungal 
invasion but the diminution of aflatoxin production. For 
instance, using automated rainout shelters to induce aflatoxin 
contamination and RNA sequencing of susceptible genotypes, 
Clevenger et al. (2016) demonstrated that the permissive state 
for PAC occurs as a result of alteration of abscisic acid 
biosynthesis and signaling by the ABR1 gene. On the other 
hand, Korani et al. (2017) observed that under both field pre-
harvest inoculation of A. flavus under drought stress and post-
harvest inoculation, the drought tolerant genotype ICG 1471, 
was colonized with the fungus comparably with the susceptible 
genotypes, however, it accumulated less aflatoxin than the 
susceptible genotypes suggesting an underlying genetic 
mechanism that restricted aflatoxin accumulation. 

In this study, we used a genomic selection (GS) strategy to 
screen two populations subjected to terminal drought stress for 
aflatoxin resistance. This took advantage of the availability of 
high density SNP chips for peanut (Clevenger et al., 2017; 
Clevenger, et al., 2018) and phenotype data from previous years 
that were used to derive prediction models for breeding values 
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used for selection. The use of GS was first reported in cattle 
(Meuwissen et al., 2001), and has subsequently been used in 
rice (Spindel et al., 2015), wheat (Poland et al., 2012; Rutkoski 
et al., 2015; Battenfield et al., 2016), maize (Bernardo and Yu, 
2007; Albrecht et al., 2011; Technow et al., 2013) and soybean 
(Zhang et al., 2016) breeding. The potential utility of GS in 
studying PAC resistance lies in the fact that it does not capitalize 
on detection of few large effect QTLs. Rather, it uses low cost 
genome spanning markers to detect even small effect variations 
that may not be captured by other QTL detection strategies 
(Heffner et al., 2009; Jannink et al., 2010). For studying PAC 
in peanut, this is useful, given the dearth of genetic variation for 
the trait (Anderson et al., 1995; Nigam et al., 2009). In addition 
to direct measurements of aflatoxin contamination, visual as 
well as high-throughput ratings were taken as easier to evaluate 
correlates for aflatoxin contamination.   

MATERIALS AND METHODS 

Genomic selection 

We applied GS to three peanut recombinant inbred line (RIL) 
populations. e first population, Florida 07 X GP-NC WS 16, 
had 383 RILs; the second population, Tifrunner X C76-16, had 
152 RILs; and the third population, Florida-07 X C76-16, had 
242 RILs. 

Florida-07 X GP-NC WS 16 population 

All of the Florida-07 X GP-NC WS 16 population had 
previously been genotyped with the Affymetrix v1 SNP array 
(Clevenger et al., 2017; Pandey et al., 2017)  resulting in 999 
SNP markers while phenotypic data on 11 traits had been 
collected for half of the population (192 lines) over a period of 
1 to 4 years.  ese traits included late leaf spot resistance (LLS; 
4 years), grade (3 years), yield (3 years), early leaf spot resistance 
(ELS; 2 years), percent meat (2 years), Tomato spotted wilt virus 
resistance (TSWV; 1 year), total and single pod weights (1 year), 
single and 100 seed weights (1 year) and percent kernel (1 year). 
e phenotype data were subjected to mixed model analysis 
using the R package lme4 (Bates et al., 2015) as implemented 
in lmerTest (Kuznetsova et al., 2017) and the resultant 
coefficients were used for GS model training and testing. 

Tifrunner X C76-16 and Florida-07 X C76-16 populations 

Phenotype data for aflatoxin collected over three and two years 
for Tifrunner X C76-16 and Florida-07 X C76-16 respectively, 
were available. ese were the results of assays done using the 
AflaTest immune-affinity columns (Vicam, Milford, MA).  
Aflatoxin data were log + 1 transformed to normalize their 
distribution. Following linear regression, the resultant 
coefficients were used for subsequent GS. All 394 lines were 
genotyped using the Affymetrix v1 and v2 SNP chips 
(Clevenger et al., 2017, 2018). e SNPs were filtered to retain 
polymorphic markers with minor allele frequency (MAF) > 
0.05. For both chips, the SNP clustering was manually 
inspected to ensure expected clustering profiles. SNPs with call 
rate below threshold were eliminated for chip 2 only since the 
polymorphic marker density was higher for the v2 chip. SNPs 
from both chips were combined and pruned using SNPRelate 
(Zheng et al., 2012) at a threshold of 0.2 to eliminate SNPs in 
linkage disequilibrium. 

For all populations, GS models were developed and 
heritability estimates derived using subsets of the populations 
that were both genotyped and phenotyped (training 
population) using rrBLUP (Endelman, 2011). To test the 
models, 10-fold cross validation was performed. In this case, the 
phenotype data for a random tenth part of the training 
population (TP) was masked and the rest of the TP was used to 
calculate the genomic estimated breeding values (GEBVs), 
which were then correlated to the actual phenotype values. This 
was performed 1000 times and the mean of the correlations was 
calculated, resulting in the prediction accuracy. The models 
were used to estimate aflatoxin GEBVs for the genotyped 
portion of the population without phenotype data (test 
population). The populations were combined, ranked on 
GEBVs and the top and bottom performers of each trait were 
selected based on seed availability for a rainout shelter study. 

Population phenotyping 

Phenotypic evaluation was performed in two rainout shelters 
that constituted two drought stress environments.  Each rainout 
shelter had 100 1.5m long microplots and were located at Gibbs 
farm in the University of Georgia, Tifton Campus (31°26'5"N; 
83°35'20"W). e soil type was Tift loamy sand (fine-loamy, 
kaolinitic, thermic Plinthic Kandiudults). Seeds were sown in 
the microplots in a randomized complete block design 
(RCBD), with 10 replications and 5 cm spacing between the 
seeds. e plants were managed following conventional 
agronomic practices for peanut including irrigation and 
fungicide applications. e tractor-mobile shelters were pulled 
over the plots 40 days prior to harvest to keep out the rain and 
impose drought and heat stress. 

Fungal inoculation 

Fungal inoculum was prepared by inoculating heat-sterilized 
cracked corn with a seven-day old A. flavus and A. parasiticus 
spore suspension containing 1 × 106 conidia/ml of water. e 
inoculum was incubated at 25 °C for 3 d then stored at 4 °C 
until used for field inoculation (Will et al., 1994). Inoculation 
was accomplished by sprinkling 28g of corn infested with A. 
flavus and 28g of corn infested with A. parasiticus on the plant 
foliage and on the soil surface approximately 60 days after 
planting (Holbrook et al., 1997). 

Rating for drought stress 

Two weeks prior to harvest, manual drought stress ratings were 
done. A scale of 1 to 5 as described by Luis et al., (2016) was 
used to rate as follows: 1) healthy plants with no drought-related 
symptoms, 2) upper branches bend downwards, 3) whole plant 
bends downwards and leaves start to dry and turn brown, 4)  
upper canopy dries up with leaves becoming brittle and thin 
and 5) plants are severely wilted and/or dead. A day before 
harvest, aerial high-throughput ratings of the plots were done 
using a multispectral camera (Parrot Sequoia, MicaSense, 
Seattle, WA) mounted on a 3DR Solo quadcopter (3D 
Robotics, Berkeley, CA).   

Aflatoxin assay 

After harvest, the shelled peanuts from each plot were ground, 
mixed and 100 g collected for aflatoxin content assay using the 
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Vicam fluorometry method. e ground samples were mixed 
with 10 g NaCl and 200 ml of methanol/water (80:20 v/v), 
homogenized using a blender and filtered through a filter paper.  
Five ml of the filtrate was diluted with 20 ml HPLC water and 
filtered again.  Ten ml of the filtrate was purified using AflaTest 
immunoaffinity columns containing aflatoxin-specific (B1, B2, 
G1 and G2) monoclonal antibodies and washed with 10 ml 
HPLC water. e column was washed with 10 ml HPLC water 
and aflatoxin was eluted using HPLC grade methanol. Aflatoxin 
was measured fluorometrically.  

Post-harvest analysis 

Aerial images were stitched using the photogrammetry software 
Pix4D (Pix4D S.A., Prilly, Switzerland) and resulted in whole 
field orthomosaics for each band: green, red, red-edge, and near-
infrared. From these, the Green Normalized Difference 
Vegetation Index  (GNDVI) was derived using ArcGIS (ESRI, 
2011). Quantitative scores for the index were obtained by 
manually drawing boundaries to delineate each plot in the fields 
with appropriate buffering to ensure no overlap between plots. 
Pixels outside the plot boundaries were eliminated. Within the 
plots, thresholds of pixels representing soil were manually 
determined using the identity function and eliminated. Canopy 
pixels were averaged to determine the score for each line.  

The index, manually collected drought scores, aflatoxin 
content and plot yield data were analyzed using Spatial Analysis 
of field Trials with Splines (SpATS) models (Rodríguez-Álvarez 
et al., 2018) as implemented in the R package statgenSTA (van 
Rossum, 2020). All analyses were done in R (R Core Team, 
2013). 

RESULTS AND DISCUSSION 

Pre-harvest aflatoxin contamination is a serious constraint in 
peanut production as it renders the commodity unacceptable 
for trade and unfit for consumption as food or feed (Waliyar et 
al., 2016). While management practices are integral to 
amelioration of this problem, identification of genetic sources 
of resistance is desirable (Holbrook et al., 2009). is study 
attempted to take advantage of the numerous genomic resources 
now available for peanut to apply the novel method of GS in 
selecting for PAC tolerance. Genomic selection has been 
implemented with varying levels of success in studying traits 
with various levels of complexity in several species. For instance, 
prediction accuracies ranging from 0.16 to 0.34 for dry weight 
and 0.52 to 0.56 for days to heading have been reported  in 
perennial ryegrass (Faville et al., 2016). In wheat, prediction 
accuracies of 0.35 for Fusarium head blight resistance, 0.62 for 
flour yield (Hoffstetter et al., 2016) and 0.28 to 0.45 for grain 
yield (Poland et al., 2012) have been reported. In maize, 
prediction accuracies of 0.28 to 0.49 for grain yield and 0.35 to 
0.6 for plant height have been reported (Zhang et al., 2015), 
while in sugarcane, values of 0.22 to 0.45 for commercially 
extractable sucrose have been reported (Deomano et al., 2020). 
In peanut, cross validation analysis with multiple models have 
yielded prediction accuracies of 0.4 to 0.6 for pods per plant 
and shelling percentage, and above 0.6 for high heritability 
traits such as days to 50% flowering, days to maturity, 100 seed 
weight, oleic acid, rust resistance and late leaf spot (Pandey et 
al., 2020). Similarly, cross validation analysis of sting nematode 
resistance in peanut yielded prediction accuracies of 0.18 to 
0.53 (Ravelombola et al., 2022). 

 

Table 1.  Output of the genomic selection validation experiment using the Florida-07 X GP-NC WS 16 population. Both genotype and 
phenotype data were available for the population. Using these 10 fold cross validation analysis was done to test the utility of GS for 
peanut. 

Trait Number of years Heritabilitya Prediction accuracy GEBVsb v Test 

TSWVc 1 0.13 0.25  

Percent kernel 1 0.13 0.32  

Yield 3 0.45 0.61  

ELSd 2 0.47 0.59 0.35 

Percent meat 2 0.49 0.57  

Total pod weight 1 0.56 0.58  

Grade (pce 16/64) 3 0.58 0.59  

LLSf 4 0.62 0.70  

100 seed weight 1 0.72 0.72  

Single seed weight 1 0.88 0.79 0.74 

Single pod weight 1 0.89 0.78 0.74 
aHeritability was estimated in the narrow sense based on additive variance captured by the SNP data 
bGenomic estimated breeding values 
cTomato spotted wilt virus 
dEarly leaf spot 
ePercent 
fLate leaf spot 

In this study we began by implementing cross validation 
analysis on the Florida-07 X GP-NC WS 16 population. This 
population was comprised of 383 RILs that were developed to 
introduce TSWV as well as early and late leaf spot resistance to 
a cultivated background (Holbrook et al., 2013). Prediction 

accuracies ranged from 0.25 for TSWV to 0.79 for single seed 
weight (Table 1). 

The tendency of traits with high heritability yielding 
higher correlation values was observed, which is in line with 
trends observed in other studies (Lin et al., 2014; Pandey et al., 
2020). This was corroborated by available test data for ELS, 
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single seed weight and single pod weight. For these traits, the 
GEBVs were correlated with the test data (Table 1). ELS which 
had moderate heritability had the lowest correlation between 
GEBVs and test data. Single seed and pod weights had high 
heritability. Correspondingly, their prediction accuracies were 
high  and the correlations between GEBVs and test data were 
also high. The trend of prediction accuracy increasing with 
higher heritability indicated that GS was effective for selection 
of traits with a clear genetic basis. However, such traits are also 
easily amenable to conventional marker-assisted selection 
precluding the necessity of using GS, which would be more 
suitable for more complex, hard to phenotype traits such as 
aflatoxin. 

The Tifrunner X C76-16 and Florida-07 X C76-16 
populations were used to evaluate the possibility of using GS in 
breeding for the more challenging trait of PAC resistance. These 
populations have elite runner backgrounds (Tifrunner for 
Tifrunner X C76-16 and Florida-07 for Florida-07 X C76-16) 
with the un-adapted C76-16 used as a source of variability for 
drought tolerance (Holbrook et al., 2013).  

Genotyping of the populations resulted in a total of 2204 
and 1781 polymorphic SNPs for Tifrunner X C76-16 and 
Florida-07 X C76-16 populations, respectively (Table 2). The 
SNPs were evenly distributed in the chromosomes. For 
Tifrunner X C76-16, the percentage of polymorphic SNPs in 
each chromosome relative to total polymorphic SNPs ranged 
from 3.1% (A10) to 8.5% (B9) while for Florida-07 X C76-16 
the range was 1.9% (A8) to 8.4% (B9) (Table 2). The genotype 
data were used for cross validation analysis. The prediction 
accuracy for PAC was 0.24 and 0.23 for Tifrunner X C76-16 
and Florida-07 X C76-16, respectively. These low values 
corresponded to the low heritability scores of 0.31 and 0.1 for 
the two populations respectively (Table 3).  Despite the low 
scores, the GEBVs were used to rank the populations, with the 
intention of testing the best and worst performers. 
Unfortunately, there was limited seed availability which 
impeded selection solely on the basis of the computed GEBVs. 
Twenty lines were selected for planting with a majority (15) 
being derived from the Tifrunner X C76-16 population. There 
were sufficient quantities of seed for 13 of the lines to be planted 
in two rainout shelters while the rest were planted in only one 
shelter (Table 4).  

 

Table 2.  Chromosomal distribution of polymorphic SNPs used for GS in the Tifrunner x C76-16 and Florida-07 x C76-16 
populations. 

 
Tifrunner x C76-16 Florida-07 x C76-16 

Chromosome SNP numbers Distribution (%)a SNP numbers Distribution (%)a 

A1 118 5.4 110 6.2 

A2 75 3.4 70 3.9 

A3 104 4.7 95 5.3 

A4 93 4.2 85 4.8 

A5 95 4.3 89 5 

A6 131 5.9 91 5.1 

A7 70 3.2 66 3.7 

A8 82 3.7 34 1.9 

A9 105 4.8 85 4.8 

A10 68 3.1 82 4.6 

B1 111 5 80 4.5 

B2 132 6 87 4.9 

B3 104 4.7 74 4.2 

B4 141 6.4 101 5.7 

B5 86 3.9 91 5.1 

B6 151 6.9 117 6.6 

B7 100 4.5 80 4.5 

B8 111 5 83 4.7 

B9 187 8.5 149 8.4 

B10 140 6.4 112 6.3 

Total 2204 100 1781 100 

a Percentage of polymorphic SNPs in each chromosome relative to total polymorphic SNPs in the genome 
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Table 3.  Heritability and prediction accuracy of PAC in the Tifrunner x C76-16 and Florida-07 x C76-16 populations. 

Population Heritabilitya Prediction accuracy 

Tifrunner x C76-16 0.31 0.24 

Florida-07 x C76-16 0.1 0.23 

a Heritability was estimated in the narrow sense based on additive variance captured by the SNP data 

 

Table 4.  Lines selected for shelter study based on GEBVs of Tifrunner x C76-16 (C1798) and Florida-07 x C76-16 (C1802) 
populations. 

Sample GEBVa Score (Log +1) Trait Shelter Availability 

C1798_H_500 3.34 Best Shelter B 

C1798_H_517 3.43 Best Shelter B 

C1798_H_414 3.56 Best Shelter B 

C1798_H_586 3.56 Best Both 

C1802_H_1118 3.60 Best Both 

C1798_H_551 3.61 Best Both 

C1802_H_1115 3.68 Best Both 

C1798_H_440 3.70 Best Both 

C1802_H_1107 3.71 Best Shelter A 

C1798_H_524 3.73 Best Both 

C1798_H_441 4.79 Worst Both 

C1798_H_456 4.80 Worst Both 

C1798_H_452 4.82 Worst Both 

C1802_H_1171 4.87 Worst Both 

C1798_H_576 4.89 Worst Both 

C1798_H_569 4.89 Worst Both 

C1798_H_530 4.94 Worst Shelter B 

C1798_H_427 5.14 Worst Shelter B 

C1798_H_445 5.17 Worst Both 

C1802_H_1197 5.71 Worst Shelter A 

A69 NA Susceptible check Both 

C321-2-3 NA Tolerant check Both 

a Genomic estimated breeding value 

Preliminary exploration of data collected at the end of the 
season showed that all data were normally distributed. 
However, there were no significant differences between the lines 
for aflatoxin in both shelters and for visual drought ratings in 

shelter A (Table 5). In addition, spatial trends were observed, 
with most traits having higher or lower scores in plots along the 
edges of the shelters (Figure 1). This necessitated the use of 
models that accounted for spatial trends in the data for 
downstream analysis.  
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Figure 1. Box plots of end season aflatoxin (a), visual drought ratings (b), GNDVI (c) and yield (d). In each shelter, the left 
most and right most plots represent rep 1 and rep 5 respectively, which were situated on the outer edges of the shelters. Clear 
spatial trends in trait scores were apparent particularly for lines sown on the edges. 

 

Table 5.  Statistical significance summary of end season data collected from both shelters. 

Shelter Trait P valuea Normalityb 

Shelter A Aflatoxin 0.2 0.59 

Shelter B Aflatoxin 0.1 0.17 

Shelter A Visual drought 0.09 0.15 

Shelter B Visual drought <0.001 0.08 

Shelter A GNDVI 0.001 0.15 

Shelter B GNDVI <0.001 0.92 

Shelter A Yield <0.001 0.97 

Shelter B Yield <0.001 0.07 

a P values indicate statistical significance of differences between the lines following analysis of variance of the traits. 
b Normal distribution of the traits was confirmed by the Shapiro Wilk test. 

Rankings of aflatoxin content were inconsistent between 
the shelters. Similarly, the performance of the lines differed 
from the GEBVs, which were the basis of selection (Figure 2). 
In both shelters, differences were apparent both in rank and 
magnitude between the aflatoxin GEBVs and the assayed 
aflatoxin content values. These differences were more 
pronounced in shelter A. Correlation analysis showed low 

positive correlation (0.32) between the GEBVs and shelter B 
aflatoxin content. However, this was not the case for shelter A 
where the correlation was hardly discernible (-0.15) (Figure 3). 
These results serve to underscore the challenge of studying PAC 
which is extremely variable even with setups designed to induce 
heat and drought stress over extended periods as is necessary for 
consistent aflatoxin contamination (Holbrook et al., 1994, 
2009).  
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Figure 2. Shelter rankings for GEBVs and end season aflatoxin content in shelter A (a) and shelter B (b). Numbers above the 
bars indicate the rank assigned to each line by the GEBVs (blue bars) and the actual 2019 aflatoxin content (pink bars). Lines 
prefixed C1798 constitute the Tifrunner X C76-16 population while those prefixed C1802 constitute the Florida-07 X C76-
16 population. The last two pink bars with no corresponding GEBV data are the check varieties. 



26 Genomic Selection for Reduced Aflatoxin Contamination 

 

Peanut Science  Volume 51 
 

 

Figure 3. Correlations of GEBV scores used to predict aflatoxin performance and actual end season aflatoxin content from 
shelter A (a) and shelter B (b). The values in both axes are expressed as log(ppb+1). 

Ideally, a difficult to phenotype trait such as PAC 
resistance would be preferable for implementing GS, since it 
uses whole genome spanning markers developed at low cost to 
detect small effect genetic variations that influence the trait 
(Heffner et al., 2009; Jannink et al., 2010). Despite the fair 
distribution of SNPs along the chromosomes of the two 
populations (Table 2), the parents of these populations have 
been shown to have generally low polymorphism (Chu et al., 

2018). In addition, the process of advancing the population 
during RIL development may have favored selection of plants 
with minimal linkage drag from the common parent (C76-16), 
thus imposing population structure. Visual inspection of 
principal coordinate analysis plots of the SNP data revealed the 
likely presence of population structure in both populations 
(Figure 4). However, factoring this in the computation of 
GEBVs did not improve the analysis. Moreover, selection was 
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done under irrigated conditions with no aflatoxin pressure. It is 
not known if genetic components from C76-16 with good 
aflatoxin or drought resistance made it to the RILs. These 
factors likely compromised the genetic architecture of PAC 

resistance, which of itself is a low heritability trait. Hence, in 
this study, GS does not confer clear advantages over 
conventional selection for PAC resistance. 

 

Figure 4. Principal coordinate analysis plots of the Tifrunner X C76-16 (a) and Florida-07 X C76-16 (b) populations 
revealing population structure in both populations. 

In other studies, low visual stress ratings and leaf 
temperature - which are less variable and cheaper to measure - 
have been associated with reduced PAC in peanuts (Holbrook 
et al., 2000a; Girdthai et al., 2010). In this study, it was not 
possible to make such an association since the correlations 
between visual drought ratings and PAC were low (0.23 and 
0.16 for shelter A and B, respectively). However, strong inverse 
correlations were observed between GNDVI and visual drought 

ratings (~ -0.7 in both shelters). In shelter B, GNDVI had 
comparable correlation with aflatoxin content as the GEBVs 
(Figure 5). Even though GNDVI is a high throughput 
phenotyping method that can substitute manual, subjective and 
labor-intensive drought rating methods, its predictive ability for 
aflatoxin resistance cannot be ascertained since the results did 
not replicate between the shelters. It is worth noting that 
GNDVI was the trait with the strongest correlation with yield 
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in both shelters. Given that both traits are statistically 
significant, it can be deduced that GNDVI can be a good 
predictor of yield under drought conditions. 

 

Figure 5. Correlograms for shelter A (a) and shelter B (b) showing correlation statistics of all data collected in the study. 
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SUMMARY AND CONCLUSION 

To the best of our knowledge, this is the first report of 
deployment of GS to tackle the challenge of breeding for PAC 
resistance in peanut. We also report the first use of GEBVs for 
selection in peanut. e use of genome spanning SNP markers 
ideally facilitates the detection of genetic variations that 
individually have a small effect on phenotype and are difficult 
to capture by other methods. Consequently, the method was 
demonstrated to be effective for traits with high heritability. 
Despite its potential usefulness for PAC resistance studies, the 
low heritability of the trait in the two populations studied 
resulted in weak prediction accuracies, suggesting that the 
challenge of genomic aided breeding for PAC resistance still 
remains. In addition, despite using rainout shelters to impose 
terminal drought stress, extreme variability of the trait was still 
observed. Lack of clear association of both visual drought 
ratings and GNDVI with PAC hindered the use of these 
strategies as better correlates for the trait. 
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